
Building a Regret-free 
Foundation for your 

Data Factory

Meagan Longoria

Denny Cherry & Associates Consulting



Intro

Meagan Longoria

Denver, CO

Work at Denny Cherry & Associates Consulting

Microsoft Data Platform MVP

Blogger, Speaker, Author, Technical Editor

About Me



Building a new 
Azure Data Factory 
and not sure what 
you don’t know? 



Agenda

Top Regrets
Poor resource organization in Azure

Lack of naming conventions

No/inconsistent key vault usage

Inappropriate use of version control

Tedious, manual deployments

Misunderstanding integration runtimes

Underutilizing parameterization

No established pipeline design patterns

Lack of comments and documentation



Resource 
Organization



Resource 
Organization

Separating environments

You need separate data factories and key vaults 
for each environment

Common containers for separation: 

• Resource Groups

• Subscriptions

• Tenants



Option 1: Separate Resource Groups

DevOps Organization

Subscription

AD 
Tenant

Dev RG

Dev Data 
Factory

Dev Key Vault

Test RG

Test Data 
Factory

Test Key Vault

Prod RG

Prod Data 
Factory

Prod Key Vault

DevOps Project

Dev Repo



Option 2: Separate Subscriptions

Prod SubscriptionTest Subscription

DevOps Organization

Dev Subscription

AD 
Tenant

Dev RG

Dev Data 
Factory

Dev Key Vault

Test RG

Test Data 
Factory

Test Key Vault

Prod RG

Prod Data 
Factory

Prod Key Vault

DevOps Project

Dev Repo



Naming 
Conventions



Naming 
Conventions

Two levels of naming conventions

Azure resources

Data Factory artifacts 



Naming Azure resources

Naming scopes and requirements

Naming components

Example naming convention: 

<resource type><workload/application><environment>

<resource type><workload/application><environment><Azure 
region><instance>



Names vs Tags

Yes, you should use tags!

You can use tags to distinguish types and environments, but will 
others? 

I name defensively because I don’t know who all will interact in 
the Azure Portal or via code

The most important thing is to be consistent!



Make resource names unique

Managed identities assume the name of the resource

Non-unique resource names cause confusion with access 
management and PowerShell/CLI



Naming Data Factory artifacts

Use abbreviations for artifact type: 

• PL – pipeline

• DS – dataset

• LS – linked service

• Pipelines should indicate what they do (copy, transform, 
execute SSIS)

• Datasets and linked service names should indicate type and 
subject of data



Artifact naming example



Key Vault



Key Vault

Store credentials in Azure Key Vault

Centralized, more secure

Use the AKV linked service or a web activity to 
retrieve credentials

Keeps linked service from being immediately 
published, stays with branch 



Data Factory with Key Vault Demo



Version 
Control



Version 
Control

DevOps Configuration

One project

One repo connected to development factory

Consequences for multiple repos

Connecting multiple factories to the same 
repo doesn’t work

Released in 2022:
Disable publish from ADF Studio
Use custom comment

Demo



Branching

Permanent branches: main, integration

Developers should work in short-lived feature branches

After unit testing, developers merge to integration

After integration testing, pull request to main

Main should always contain code that is ready to be deployed to 
the next environment



Branching and publish example

Main

Integration

Feature 
Branch 
B

Feature 
Branch A

Main

adf_publish



Deployment



Deployment

Main question: 

Copy JSON files or ARM template?

Next question: 

Manual, PowerShell/CLI, or 
DevOps pipeline?

Ways to deploy

Demo



ARM templates

Deployment can be manual or automated

Use ADF global parameters to change pipeline values for different 
environments

Use ARM template parameters for linked services values in different 
environments.

Requires that all ADF artifacts be deployed each time

Requires that parameterized elements are exposed in template 
parameters



ARM templates plus additional steps

You may want to: 

Be sure you have generated current ARM template

Stop triggers before deploying and restart after

Add/update triggers after deployment

Store ARM template parameters file for each environment

Update any additional values/delete extra objects



Deploy JSON files 

Deployment can be manual or automated

Files are deployed from a chosen source control branch (usually main)

Use ADF global parameters to change pipeline values for different 
environments

Use a reference file and code (PowerShell) to update values or 
substitute an individual JSON file

Allows for selective deployment



DevOps pipeline with Deploy Data Factory

Azure DevOps and the Deploy Azure Data Factory by SQLPlayer
extension (free)

Use JSON files in designated branch in source control

Selective deployment

Config files stored as CSV

Choose whether to delete objects in target not in source

Choose whether to stop/start triggers



DevOps release pipeline

Demo



Integration 
Runtimes



Integration 
Runtimes

Types

Azure

Self-hosted

SSIS



Integration 
Runtimes

Self-hosted integration runtimes

Needed with any private network (even in Azure)

Give it the cores, RAM, hard drive space it needs

Share IRs for lower environments to save costs

Size appropriately for concurrent workloads when 
sharing

Make sure appropriate libraries are installed and 
updated 



Integration 
Runtimes

Azure integration runtime

Used for copy between cloud data stores and for data 
flows

Auto-scales based upon prescribed DIUs

Provision your Azure IR so you are sure of the region 
and avoid data egress charges

Be sure to set TTL when using data flows

Carefully monitor performance with Managed vNet



Parameterization



Parameters

Parameterize your factory

Global parameters

Pipeline parameters

Dataset parameters

Linked service parameters



Parameters

General guidance

Parameterize datasets. It’s easy to have parameter 
explosion if you don’t.

Linked Services can be 1:1 or parameterized. What 
makes the most sense in your context? 

Parameterize pipelines whenever practical, to 
make them reusable.



Parameterizing datasets

Demo



Design 
Patterns



Design 
Patterns

Data Factory design patterns

Pipeline hierarchies

Dependencies and error handling



Dependencies and Error Handling

Ensure you have retries set to handle transient errors

Set timeouts so you don’t have activities stuck for days

Log errors in a way that makes the info easily usable – send data 
to Log Analytics and/or another database

Understand when a pipeline fails and plan notifications 
accordingly



Comments & 
Documentation



Documentation

Document in your code

Not possible to comment the json code behind pipelines

Built-in features to provide notes: 

• Pipeline description

• Activity description

• Linked service description

• Integration runtime description 

• Annotations 

• User properties



Documentation

Additional Documentation

Use the wiki in your DevOps project

Document large commits/releases



Final 
Comments



Helpful Resources

Azure Cloud Adoption Framework: https://docs.microsoft.com/en-us/azure/cloud-
adoption-framework/ready/azure-best-practices/resource-naming

Data Factory naming convention: https://erwindekreuk.com/2019/04/azure-data-
factory-naming-conventions/

Pipeline hierarchies: https://mrpaulandrew.com/2019/09/25/azure-data-factory-
pipeline-hierarchies-generation-control/

ADF tools from SQL Player: https://sqlplayer.net/adftools/

Activity failures and pipeline outcomes: https://datasavvy.me/2021/02/18/azure-
data-factory-activity-failures-and-pipeline-outcomes/

https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/resource-naming
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/resource-naming
https://erwindekreuk.com/2019/04/azure-data-factory-naming-conventions/
https://erwindekreuk.com/2019/04/azure-data-factory-naming-conventions/
https://mrpaulandrew.com/2019/09/25/azure-data-factory-pipeline-hierarchies-generation-control/
https://mrpaulandrew.com/2019/09/25/azure-data-factory-pipeline-hierarchies-generation-control/
https://sqlplayer.net/adftools/
https://datasavvy.me/2021/02/18/azure-data-factory-activity-failures-and-pipeline-outcomes/
https://datasavvy.me/2021/02/18/azure-data-factory-activity-failures-and-pipeline-outcomes/


Meagan Longoria
Denny Cherry & Associates Consulting

Set up 
your data 
factory for 
success.

Datasavvy.me

@mmarie

/in/meaganlongoria

mmarie@techhub.social


	Slide 1: Building a Regret-free Foundation for your Data Factory
	Slide 2
	Slide 3: Building a new Azure Data Factory and not sure what you don’t know? 
	Slide 4: Top Regrets
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Naming Azure resources
	Slide 12: Names vs Tags
	Slide 13: Make resource names unique
	Slide 14: Naming Data Factory artifacts
	Slide 15: Artifact naming example
	Slide 16
	Slide 17
	Slide 18: Data Factory with Key Vault Demo
	Slide 19
	Slide 20: DevOps Configuration
	Slide 21: Branching
	Slide 22: Branching and publish example
	Slide 23
	Slide 24: Ways to deploy
	Slide 25: ARM templates
	Slide 26: ARM templates plus additional steps
	Slide 27: Deploy JSON files 
	Slide 28: DevOps pipeline with Deploy Data Factory
	Slide 29: DevOps release pipeline
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Azure integration runtime
	Slide 34
	Slide 35
	Slide 36: General guidance
	Slide 37: Parameterizing datasets
	Slide 38
	Slide 39
	Slide 40: Dependencies and Error Handling
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Helpful Resources
	Slide 46: Meagan Longoria

